Photocatalytic Reduction of NO<sub>3</sub> to Form NH<sub>3</sub> over Pt-TiO<sub>2</sub>

Akihiko KUDO, Kazunari DOMEN, Ken-ichi MARUYA, and Takaharu ONISHI\*

Research Laboratry of Resources Utilization, Tokyo Institute of Technology,

4259 Nagatsuta, Midori-ku, Yokohama 227

Photocatalytic reduction of  ${\rm NO_3}^-$  to form  ${\rm NH_3}$  and the simultaneous evolution of  ${\rm O_2}$  were observed over Pt-TiO $_2$  in aqueous nitric acid and sodium nitrate solutions.

Photocatalytic decomposition of water into  $H_2$  and  $O_2$  ( $\Delta G^O_{298} = 237 \text{ kJ}$ ) has been accomplished in several systems. 1-6) In the case of  $Pt-TiO_2$ , however, only a small amount of  $H_2$  evolves from distilled water and aqueous alkaline solutions and no  $O_2$  evolution takes place. 7-9) Here, a new photoinduced energy conversion reaction is reported on  $Pt-TiO_2$  powder, i.e.

2HNO<sub>3(aq)</sub> + H<sub>2</sub>O<sub>(1)</sub> → NH<sub>4</sub>NO<sub>3(aq)</sub> + 2O<sub>2(g)</sub>  $\Delta$ G<sup>O</sup><sub>298</sub> = 269 kJ (1)

TiO<sub>2</sub> (BET surface area; 23.2 m<sup>2</sup>/g, anatase) was prepared by pyrolysis of

Ti(SO<sub>4</sub>)<sub>2</sub> (Kanto Chemical Co., INC.) at 1000 K for 2 h in air. Pt, Rh, and Pd(0.3 wt%) were supported on TiO<sub>2</sub> from H<sub>2</sub>PtCl<sub>6</sub>, RhCl<sub>3</sub>, and PdCl<sub>2</sub> respectively by photodeposition. The photocatalytic reactions were carried out in a closed gas circulation system with a vacuum line. The catalyst (0.2 g) was suspended in solution (250 - 300 ml) by magnetically stirring in a Pyrex reaction cell with a flat window, and it was irradiated by an Xe short arc lamp (USHIO, UXL 500D-O, 500 W). The amounts of evolved H<sub>2</sub>, O<sub>2</sub>, and N<sub>2</sub> were determined by gas chromatography (Ar carrier, molecular sieve-5A column). NH<sub>3</sub>, which existed in a supernatant liquid of a reactant, was analyzed by absorptiometry (BECKMAN, ACTA C-III) at 430 nm by means of Nessler's reagent (Kanto Chemical Co., INC.), and NO<sub>2</sub> at 520 nm using Griess-Romijin Nitrite reagent (Kanto Chemical Co., INC.). On the reaction of aqueous HNO<sub>3</sub> and CH<sub>3</sub>OH mixed solution, NH<sub>3</sub> was determined as NH<sub>4</sub>NO<sub>3</sub> obtained by drying up the supernatant solution at ca. 330 K in a vacuum line.

Time courses of NH $_3$  and O $_2$  formations from aqueous nitric acid and sodium nitrate solutions with the Pt(0.3 wt%)-TiO $_2$  photocatalyst are shown in Fig. 1. The amounts of produced NH $_3$  and O $_2$  increased proportionally to the irradiation

1020 Chemistry Letters, 1987

time. The quantum yield for  $\mathrm{NH_3}$  formation was ca. 2% at 330 nm in 1 M  $\mathrm{HNO_3}$  (1 M = 1  $\mathrm{mol}\cdot\mathrm{dm}^{-3}$ ). Negligible amounts of  $\mathrm{H_2}$  and  $\mathrm{N_2}$  were observed. The amount of evolved  $\mathrm{O_2}$  should be twice of that of  $\mathrm{NH_3}$  according to the Eq. 1. However, it was less than the stoichiometric amount as shown in Fig. 1. Similar phenomena were reported in the cases of photodecomposition of water on  $\mathrm{Pt}\text{-TiO_2}$ , and they were attributed to the peroxide formation.  $^{7-9}$ )

When aqueous nitric acid solution without any catalysts was irradiated, only a little amount of  ${\rm NO}_2^{-}$  was detected as shown in Furthermore, over the  $TiO_2$ Table 1. photocatalyst, a little amount of NO2 and a trace of  $NH_3$  were observed in aqueous The amounts of NO2 nitric acid solution. were similar in both cases. It seems that  $NO_2$  is formed under the UV irradiation by the photochemical reaction of  ${\rm NO_3}^-$  in the The reduction of  $NO_3$  to  $NO_2$  over ZnO photocatalyst was also reported previously. 10) On the contrary,  $NH_3$  and  $O_2$ evolved over the Pt(0.3 wt%)-TiO2 photocatalyst and the rate of  $NH_3$  formation increased with the increase of the The reaction also concentration of HNO3. occured over TiO, loaded with other noble metals such as Rh and Pd. A small amount of  $H_2$  (0.05  $\mu$ mol/h) was evolved over the Pd(0.3 wt%)-TiO<sub>2</sub> photocatalyst. methanol as a reducing agent was added to HNO3 (1 M) / Pt(0.3 wt%)-TiO<sub>2</sub>, the rate of NH<sub>3</sub> formation increased by more than 5 times, and the  $H_2$  evolution was also observed as shown in



Fig. 1.  ${\rm NH_3}$  and  ${\rm O_2}$  formations from aqueous  ${\rm HNO_3}$  and  ${\rm NaNO_3}$  solutions over  ${\rm Pt(0.3~wt\%)-TiO_2}$  photocatalyst.

O; NH<sub>3</sub>, •; O<sub>2</sub> in 1 M HNO<sub>3</sub>  $\square$ ; NH<sub>3</sub>, •; O<sub>2</sub> in 1 M NaNO<sub>3</sub> Catalyst; 0.2 g, Light source, Xe lamp (500 W), Solution, 300 ml (initial).



Fig. 2.  ${\rm NH_3}$  and  ${\rm H_2}$  formations from aqueous  ${\rm HNO_3}$  and MeOH mixed solution over  ${\rm Pt}(0.3~{\rm wt\$}){\rm -TiO_2}$  photocatalyst.

O;  ${\rm NH}_3$ ,  $\Delta$ ;  ${\rm H}_2$  Catalyst; 0.2 g, Solution; 1 M HNO $_3$  (200 ml)+MeOH (50 ml), Arrows indicate that the gas phase was evacuaued.

| Table 1. | Photocatalytic reactions of aqueous nitric acid solutions over Tio | 2 |
|----------|--------------------------------------------------------------------|---|
|          | and TiO <sub>2</sub> loaded with some noble metals <sup>a)</sup>   |   |

| Photocatalysts         | Concentration of HNO <sub>3</sub> /M | µmol·h <sup>-1</sup> | ο <sub>2</sub><br>μπο1·h <sup>-1</sup> | µmol·h <sup>-1</sup> |
|------------------------|--------------------------------------|----------------------|----------------------------------------|----------------------|
|                        |                                      |                      |                                        |                      |
| none                   | 0.1                                  | 0                    | 0                                      | 0.3                  |
| TiO <sub>2</sub>       | 0.1                                  | trace                | 0                                      | 0.2                  |
| Pt-TiO <sub>2</sub> b) | 0.1                                  | 0                    | 0                                      | -                    |
| Pt-TiO2c)              | 0.1                                  | 19                   | 0                                      | -                    |
| Pt-TiO2                | 0.01                                 | 0.4                  | 0.8                                    | -                    |
| Pt-TiO2                | 0.1                                  | 2.1                  | 1.6                                    | 0                    |
| Pt-TiO <sub>2</sub>    | 1                                    | 2.4                  | 2.2                                    | 0                    |
| Pt-TiO <sub>2</sub> d) | 1                                    | 15.2                 | 0                                      | -                    |
| Rh-TiO <sub>2</sub>    | 0.1                                  | 0.7                  | 0.4                                    | 0                    |
| Pd-TiO <sub>2</sub>    | 0.1                                  | 0.2                  | 0.1                                    | 0                    |

a) Catalyst: 0.2 g, light source: Xe lamp (500 W). b) Dark reaction. c)  $H_2$  (ca. 7 kPa) was introduced into the gas phase and the reaction was carried out in dark. d) MeOH was added. (1 M HNO<sub>3</sub>: MeOH = 4:1 v/v)

Fig. 2. Interestingly, the rate of  $\rm H_2$  evolution decreased with the reaction time, which was not the case in aqueous methanol solution without  $\rm HNO_3$ . When the gas phase was evacuated a small amount of  $\rm H_2$  was accumulated again. It seems that the evolved  $\rm H_2$  was exhausted by the reduction of  $\rm NO_3^-$ . Actually, the  $\rm NH_3$  formation proceeded from aqueous  $\rm HNO_3$  solution (0.1 M) and gaseous  $\rm H_2$  over  $\rm Pt(1$  wt%)- $\rm TiO_2$  in dark. This means that the reduction of  $\rm NO_3^-$  into  $\rm NH_3$  by hydrogen occurs on  $\rm Pt$  without any assistance of photon. It is inferred that  $\rm NO_3^-$  is reduced by the adsorbed hydrogen on  $\rm Pt$  produced by the photoreduction of water. The similar phenomenon that photocatalytically evolved  $\rm H_2$  and/or  $\rm H$  is concerned with a successive reaction was reported on  $\rm N$ -alkylation of amine over the  $\rm Pt$ - $\rm TiO_2$  photocatalyst.  $^{11,12}$ )

Thus, the follwing reaction schemes are proposed for the reduction of  ${\rm NO}_3^-$  on Pt-TiO $_2$  under the irradiation condition;

$$NO_3^- + 9H^+ + 8e^- \longrightarrow NH_3 + 3H_2O$$
 on Pt (2)

$$40H^- + 4h^+ \longrightarrow O_2 + 2H_2O$$
 on  $TiO_2$  (3)

Photochemically produced  $NO_2^-$  also seems to be reduced on Pt in a manner similar to that of Eq. 2. Recently Halmann et al. reported the reduction of nitrite ion to ammonia in the presence of the  $Na_2S$  as a reducing agent over various semiconductors without noble metals in aqueous KOH solution. However, Pt supported on  $TiO_2$  was indispensable for the photoreduction of  $NO_3^-$  and/or  $NO_2^-$  to  $NH_3$  in our system which contained no reducing agent in acidic or neutral solution. It is noteworthy that  $NH_3$  was predominantly produced as a reduced product over the  $Pt-TiO_2$  photocatalyst in spite of the low overpotential for the  $H_2$  evolution on Pt.

## References

- K. Domen, S. Naito, T. Onishi, K. Tamaru, and M. Soma, J. Phys. Chem., 86, 3657 (1982).
- 2) K. Domen, A. Kudo, and T. Onishi, J. Catal., 102, 92 (1986).
- J.- M. Lehn, J.-P. Sauvage, R. Ziessel, and L. Hilaire, Isr. J. Chem.,
   22, 168 (1982).
- 4) K. Yamaguchi and S. Sato, J. Chem. Soc., Faraday Trans. 1, <u>81</u>, 1237 (1985).
- 5) K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya, and T. Onishi, J. Chem. Soc., Chem. Commun., 1986, 356.
- 6) A. Kudo, K. Domen, K. Maruya, and T. Onishi, Chem. Phys. Lett., <u>133</u>, 517 (1987).
- 7) A. Mills and G. Porter, J. Chem. Soc., Faraday Trans. 1, <u>78</u>, 3659 (1982).
- 8) B. Gu, J. Kiwi, and M. Grätzel, Nouv. J. Chimi., 9, 539 (1985).
- 9) I. Ait Ichou, D. Bianchi, M. Formenti, and S. J. Teichner, "Homogeneous and Heterogeneous Photocatalysis, "D. Reidel Publishing Company, Dordrecht, (1986), pp.433-443.
- 10) J. Cunningham and H. Zainal, J. Phys. Chem., 76, 2362 (1972).
- 11) S. Nishimoto, B. Ohtani, T. Yoshikawa, and T Kagiya, J. Am. Chem. Soc., 105, 7180 (1983).
- 12) B. Ohtani, H. Osaki, S. Nishimoto, and T. Kagiya, J. Am. Chem. Soc., 108, 308 (1986).
- 13) M. Halmann and K. Zuckerman, J. Chem. Soc., Chem. Commun., 1986, 455.

(Received February 28, 1987)